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The neutral stability curve for the flat-plate boundary layer has been calculated using 
the Orr-Sommerfeld equation and compared to those obtained using upper- and 
lower-branch scalings. The Orr-Sommerfeld results agree well with the lower-branch 
scaling at Reynolds numbers relevant to experiment, but agree well with the upper- 
branch scaling only for R, > lo5. It is shown that the critical layer only emerges from 
the viscous wall layer when R, > lo5. This suggests that for R, < lo5, when the critical 
layer lies within the viscous wall layer, the disturbance has a triple-deck structure, even 
for the upper branch of the neutral curve (which can be reached if the phase jump 
across the critical layer is retained). 

The transition from a triple-deck to a five-deck structure with increasing Reynolds 
number on the upper branch occurs relatively abruptly and can be associated with a 
square-root branch point in the Tietjens function. Essentially, the lower- and upper- 
branch scalings pertain to two different modes, the first possessing a triple-deck 
structure, the second a five-deck structure. The modes are connected at the branch 
point, and the neutral curves of each mode join to give a single curve close to this 
branch point. The asymptotic expansions for the upper- and lower-branch neutral 
curves depend upon the analyticity of the dispersion relationship, and so the proximity 
of the branch point indicates where these expansions will be liable to inaccuracies. This 
explains the poor neutral-curve predictions made by five-deck analyses at the Reynolds 
numbers where transition occurs. 

1. Introduction 
The Orr-Sommerfeld equation has great historical significance in the study of the 

stability of the flat-plate boundary layer. The role of viscosity is firstly to establish the 
Blasius profile. This profile is then assumed not to vary significantly over distances 
comparable to the wavelength of wavy perturbations. In this parallel-flow assumption 
viscosity is ignored at leading order. Viscosity is then re-introduced in the perturbation 
equation. This approach, although inconsistent, is widely used since it can accurately 
reproduce experimental results (e.g. Ross et al. 1970). 

Consistent asymptotic solutions to the linearized Navier-Stokes equations can be 
obtained in which expansions are made in inverse powers of the Reynolds number. 
Such solutions can be made arbitrarily accurate by increasing the Reynolds number, 
but it is not known a priori whether the solution is reliable (or even applicable) at a 
given finite Reynolds number. Traditionally, the answer to this question has been 
found by direct comparison with experiment. A brief summary of how the neutral 
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stability curves of the asymptotic theory and Orr-Sommerfeld theory compare with 
experimental data is given in 92. In $3 it is shown how the Orr-Sommerfeld theory 
comes into close agreement with the asymptotic theory at sufficiently large -Reynolds 
numbers. Hultgren (1987) showed how an asymptotic theory based on the lower- 
branch scaling can capture the upper-branch neutral curve when a particular higher- 
order term is retained in the expansion. Hultgren's approach is compared to the 
Orr-Sommerfeld theory in $4. Also presented in this section is evidence of a branch 
point in the Tietjens function. 

Some results from Reid (1965) are discussed in $ 5  concerning two asymptotic 
approaches to the Orr-Sommerfeld equation. One gives the triple-deck neutral curve 
and the other gives the five-deck neutral curve. Reid gives an inequality that determines 
when each approach is valid. A numerical evaluation of the terms appearing in the 
inequality is given, and, as anticipated by Reid, it is shown how the upper branch can 
be obtained as a limit of the lower-branch analysis (cf. Hultgren's results). However, 
the lower-branch results cannot be obtained as a limit of Reid's upper-branch analysis. 
The effect of including small pressure gradients is shown in 96 and our conclusions are 
given in 97. 

2. Theory and experiment 
The following account is derived from the recent review by Cowley & Wu (1993), 

where more details can be found. Length, time, velocity and pressure will be non- 
dimensionalized with respect to 6, a/&, U, and pU,Z respectively where 6 is the 
displacement thickness given by 

6 = 1.7208 gr2, 
U, is the free-stream velocity, x is the streamwise coordinate, p is the density (assumed 
constant) and v is the kinematic viscosity. The Reynolds number is then given by 

R, = y. SU, 

Results from other papers will mostly be given in these units (this choice changes some 
of the familiar asymptotic scalings) or else the appropriate coordinate transformations 
will be provided. 

For R, less than about 520, Orr-Sommerfeld theory predicts that all waves are 
damped. For larger R,, a band of unstable waves exists within the solid neutral curve 
shown in figure 1. The circles show the experimental estimates of the neutral curve 
obtained by Ross et al. (1970). Advocates of Orr-Sommerfeld theory claim that the 
broad agreement vindicates the parallel-flow assumption for R, > 500. Indeed, 
Orr-Sommerfeld theory is often used to predict transition on aircraft wings. 

The dotted line on figure 1 shows the neutral frequency predicted by the leading- 
order term in the asymptotic theory for the lower branch: 

o - 0.995R,"' (3) 

and the dashed line corresponds to the neutral curve obtained from summing the first 
four terms in the asymptotic expansion 

(4) o - 0.995R;'/'(l + 1.597R;'I4+ 10.02R,112+0.988R;3/41n R,); 
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FIGURE I .  The solid line is the Orr-Sommerfeld neutral curve. Circles are experimental data from 
Ross et al. (1970). Dotted and dashed lines are the lower-branch results (3) and (4) respectively. 
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FIGURE 2. The solid line and circles are the Orr-Sommerfeld neutral curve and data from Ross et al. 
(1970) respectively. Dotted and dashed lines are the upper branch results ( 5 )  and (6 )  respectively. 

see Smith (1979), but note that (3) and (4) are R, times larger than the results given by 
Smith owing to o being non-dimensionalized with respect to displacement thickness 
(the same is also true in ( 5 )  and (6 )  below). There is good agreement with the 
experimental data. At this order, all of (4) represents a parallel-flow approximation; 
non-parallel effects are introduced at a still higher order. Thus for the lower branch, 
Orr-Sommerfeld theory, experiment and asymptotic theory are all in broad agreement. 

The situation is not so clear on the upper branch. The dotted line on figure 2 is the 
leading-order term of the asymptotic upper-branch scaling : 

w - 0.2027Ri1l5, ( 5 )  
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and the dashed line corresponds to the neutral curve obtained from summing the first 
four terms in the asymptotic expansion 

(6) 

see Bodonyi & Smith (1981). Again, at this order (6) represents a parallel-flow 
approximation. Improved agreement can be obtained by shifting the origin and 
replacing R, with R,+d where d is O(1). This is consistent since by assumption 
R, 9 1 .  Bodonyi & Smith (198 1) find that d = 300 gives better agreement for R, - 800, 
but since this gives d/R, M 0.4 such a ploy is of doubtful validity. Adding the first 
non-parallel terms to (6) does not bring the curves into line with either the experimental 
data or the Orr-Sommerfeld solution, although adding the non-parallel terms to an 
Orr-Sommerfeld solution gives a slight improvement (Bodonyi & Smith 198 1). 

If the upper branch is to coincide with the experimental data, many higher-order 
terms will need to be added, including non-parallel terms. This tends to suggest that 
non-parallel effects are important in this region of the (R6, o)-plane (see the abstract of 
Bodonyi & Smith 1981). On the other hand, the asymptotic analyses both show that 
the flow is quasi-parallel at leading order, and the good performance of the 
Orr-Sommerfeld approximation can be attributed to this fact. Thus there is agreement 
between the experiment and the upper branch of the Orr-Sommerfeld calculation; and 
the disagreement with the upper-branch asymptotics is not easy to reconcile. 

Nonetheless, at sufficiently large Reynolds number, the Orr-Sommerfeld theory 
ought to approach both of the parallel-flow asymptotic expansions (4) and (6). 
Convergence between Orr-Sommerfeld theory and the lower-branch scaling is indeed 
already apparent in figure 1 for R, > 1000. 

w - 0.2027R;li5 (1 +0.5108R;1110 +O.3226R;'l5 +0.0384R;3/101n R,); 

3. Numerical Orr-Sommerfeld solutions 
Numerical solutions to the Orr-Sommerfeld equation have been calculated using a 

compound matrix method based on Davey (1982), and the neutral curves have been 
followed up to R, = lo6. The integrations were started at 6 displacement thicknesses 
from the wall and it was necessary to use 10000-point velocity profiles. The results are 
shown in figure 3 on a log-log plot. The Orr-Sommerfeld solution rapidly approaches 
(4), and for R, > lo4 is well approximated by the leading-order term in the asymptotic 
expansion. However, the Orr-Sommerfeld solution approaches the upper branch only 
for R, > 10'. The reason for the large delay before the upper-branch scaling is reached 
is that the critical layer only starts to emerge as an identifiable structure, separate 
from the viscous wall layer, beyond R, M lo5. This can be seen by studying the 
Orr-Sommerfeld eigenfunctions as the Reynolds number increases. 

Figure 4(a-h) shows the magnitudes and phases of the eigenfunctions at R,= 
3 x lo3, 3 x lo4, 3 x lo5 and lo6 for the upper-branch neutral modes. In each plot the 
dotted line indicates the height at which the phase velocity of the wave matches the 
local mean flow speed. Figures 4(a) and 4(b) show the magnitude and phase of the 
eigenfunction at R, = 3 x lo3. It has the familiar form that has been measured many 
times in experiments, e.g. Ross et al. (1970). Figures 4(c) and 4(d) show the magnitude 
and phase at R, = 3 x lo4; (c) shows a slight wobble near the dotted line but (d)  shows 
nothing. Figures 4(e) and 4cf> show the magnitude and phase at R, = 3 x 10'. A finite 
phase jump is beginning to form at the critical layer. Figures 4(g) and 4(h) show the 
magnitude and phase at R, = lo6. From the phase variation it is clear that the critical 
layer is now established. A region of almost constant phase lies above and below the 
critical layer with a finite jump occurring across the critical layer. The singularity in the 
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FIGURE 3. The solid line is the Orr-Sommerfeld neutral curve extended to higher Reynolds numbers. 
Circles are data from Ross et al. (1970). Dotted and dashed lines are the leading-order and four-term 
expansions for the upper- and lower-branch asymptotic scalings (3H6). 
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FIGURE 4. Orr-Sommerfeld eigenfunctions. (a, c, e, g) are the normalized magnitudes for R, = 3 x lo3, 
3 x lo4, 3 x lo5 and lo6 respectively. (b, d , f ,  h) are the arguments in radians of the eigenfunctions for 
R, = 3 x lo3, 3 x lo4, 3 x lo5 and lo6 respectively. The dotted lines show the height at which the phase 
speed matches the local mean flow speed. 

eigenfunction at the critical layer is logarithmic in the inviscid case and even a very 
small amount of viscosity is likely to lead to only a small change in the magnitude of 
the eigenfunction across the critical layer. Figure 4(g) shows that the change in the 
magnitude is barely discernible even at R, = lo6. 
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FIGURE 5. (a-d) The phases of the eigenfunctions for R, = 3 x lo3, 3 x lo4, 3 x lo5 and lo6 
respectively. The bars represent the phase jump predicted by (7). 

The phase jump across the critical layer is predicted by the asymptotic theory of 
Bodonyi & Smith (1981) and so can be compared with that observed in figures 4 ( f )  and 
4(h). The phase jump can also be conveniently extracted from the coefficient of the 
logarithmic term of equation (2.19) of Wu, Stewart & Cowley (1995). Converting this 
into standard Orr-Sommerfeld variables gives a predicted phase jump A# of 

where a: is the wavenumber, Po is the pressure perturbation at the wall and h = 0.33206 
(the velocity gradient at the wall). Figure 5(a-d) shows the phases of the eigenfunctions 
at the same Reynolds numbers as figure 4(b, d , f ,  g) .  The horizontal bars indicate the 
phase jump predicted by (7). The critical layer emerges from the viscous wall layer 
between figure 5(b) and 5(c), and the observed phase jump is close to that predicted 
by (7) for figures 5 (c) and 5 (d). For figures 5 (a) and 5 (b) the critical layer lies within 
the viscous wall layer but (7) still gives broad agreement with the phase change across 
the two extrema in the phase of the eigenfunctions. 

The change from a triple-deck structure to a five-deck structure is shown even more 
strikingly in figure 6. Figures 6(a) and 6(b) correspond to the upper and lower branches 
respectively. The solid lines give the height of the critical layer and the dashed lines 
show the heights at which the phase of the eigenfunction has turning points. When 
moving away from the wall on the lower branch, figure 6(b), first the critical layer is 
encountered? followed almost immediately by the first turning point of the phase of the 
eigenfunction. A second extremum occurs a little higher and above this point the phase 
is practically constant. This upper extremum gives an estimate for the edge of the 
viscous wall layer. The dotted line in figure 6 (b) corresponds to the triple-deck scaling 
for the thickness of the viscous wall layer. 
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FIGURE 6. For (a) the upper branch and (b) the lower branch, the solid lines give the height of the 
critical layers, the dashed lines are the heights of turning points in the phase of the eigenfunction 
along the neutral curve, and the dotted lines show asymptotic scaling results. Rill4 is the height of the 
triple-deck viscous layer, Riz’’ is the height of the five-deck viscous layer and R;”l0 is the height of 
the critical layer. 

The structure of the upper branch for R, < lo5 is almost identical to that of the lower 
branch, the thickness of the viscous wall layer even follows the triple-deck scaling. The 
only difference is that now the critical layer lies in between the first two extrema. As 
R, approaches lo5 it can be seen that the critical layer gradually rises up through the 
viscous wall layer. For R, > lo5 the critical layer branches out of the viscous wall layer 
and the five-deck asymptotic structure is formed. The dotted lines correspond to the 
five-deck asymptotic scalings for the height of the critical layer and the thickness of the 
viscous wall layer; for R, > lo5 they match very well with the Orr-Somrnerfeld 
calculations. 

4. A modified triple-deck analysis 
The results of the previous section suggest that for R, < lo5 a triple-deck structure 

obtains, rather than a five-deck structure. Of considerable interest, therefore, is the 
work of Hultgren (1987) where both upper and lower branches are calculated using a 
triple-deck analysis. 

Hultgren obtained the following dispersion relationship : 

where 
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FIGURE 7. The locus of the Tietjens function F+(&,) in the Argand diagram for 5, = e-5ni/6z, where z 
is real and varies between 2.2 and 12. F++O as I&,I+m according to Reid (1965, equation (3.77)). 
This limit corresponds to the upper-branch scaling; z x 2.3 gives the lower-branch scaling. 

is the Tietjens function, Ai is the Airy function, 

to = e--5ni/6(2i/2/K)2/3, (10) 

2, = 2x,/u;, (1 1) 

K is the scaled (complex) wavenumber, x, is a slow streamwise coordinate, x1 = c2x, 
and 

01 = 1 . 7 2 0 8 ~ ~ ~ : / ~ ,  (12) 

R = 1.7208 x;/'/e4, (13) 

8 F =  w*v/U," < 1, (14) 

where w* is the dimensional frequency. This equation is in practically the same form 
as equation (4.42) of Goldstein (1983). For full details concerning the derivation of (8) 
the reader is referred to Goldstein's paper. The constants 4, J ,  and J3 have the values 
0.92809, - 2.09322 and 1.28777 respectively, and Ui = 0.332062/2. The + 00, indicates 
that the path of integration tends to infinity in the sector largtl < n/3. 

It would be consistent to ignore the minus sign in the argument of the logarithmic 
term in (8) since it only contributes a complex term of 0(s3 )  and terms of this order 
were neglected in the derivation of (8). However, Hultgren points out that if this 
'naturally occurring normalization ' is retained, then both the upper-branch and the 
lower-branch neutral curves can be calculated using (8). The reason for this follows 
from the behaviour of the Tietjens function when K is purely real. 

Figure 7 shows how F+(to)  moves through the complex plane for real K (i.e. on the 
neutral curve). The values on the graph itself are 2;/3/~2/3. For real K the right-hand side 
of (8) is purely real, as is the denominator of the left-hand side if the minus sign is 
ignored. In this case the only solution to (8) occurs when F+ is also real, i.e. at 
,f i /3/~2/3 % 2.3. This root corresponds to the classical lower-branch scaling. In order 
to obtain the second neutral curve it is necessary for (8) to contain imaginary terms 
in addition to those implicit in the Tietjens function. The simplest way of achieving this 
is to retain the minus sign in the argument of the logarithmic term (essentially, this 
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FIGURE 8. Circles are experimental results from Ross et al. (1970), the solid line is the Orr-Sommerfeld 
neutral curve and the dot-dash line is the neutral curve from (8). The dotted lines are (3) and (5). 

means that the stabilizing influence of the phase jump across the critical layer is 
included). By using the asymptotic expansion for the Tietjens function for large ILJ 
(cf. equation (3.77) of Reid (1965), see also (18) below), the upper-branch asymptotic 
scaling is recovered. 

Figure 8 shows a comparison between the Orr-Sommerfeld calculations of $3 and 
numerical solutions for the neutral curve of (8). There is excellent qualitative agreement 
and strong quantitative agreement over substantial ranges of R,. The kink in the neutral 
curve, beyond which the upper-branch scaling occurs, can be related to the small loop 
in the Tietjens function in figure 7. It is interesting to note that a similar kink was found 
by Reid (1965) in his approximations to the Orr-Sommerfeld equation for plane 
Poiseuille flow, and also for the asymptotic suction profile. These kinks were also 
attributed to the small loop in the Tietjens function. 

Reid conjectured that this kink may not be a true feature of the full Orr-Sommerfeld 
equation but a consequence of the asymptotic approximations made in its evaluation. 
In particular, he suggests that it may disappear if the viscous correction to the inviscid 
solution that has a logarithmic branch point is included. The kink is apparent in our 
full numerical solutions to the Orr-Sommerfeld equation and also in Hultgren’s triple- 
deck analysis. This suggest that the kink is a robust feature, which, since it follows from 
the Tietjens function, will be present in a wide class of stability problems. 

The behaviour of the Tietjens function close to the small loop can be studied by 
allowing K to become complex. Let 6, = e-5ir/6 z = e-5ir’i6(x + iy). Figure 9 shows, on an 
expanded scale, loci of F+ in the complex plane for the lines x = const. and y = const. 
The solid line is y = 0 and corresponds to the line in figure 7. The dotted lines are for 
y = 0.1, y = 0.3, x = 6.0 and x = 6.3 and the dashed lines are for x = 6.134 and y = 
0.161. The latter two each form a cusp close to z M 6.134+0.161i. This behaviour is 
clearly indicative of a square-root branch-point singularity at which two Riemann 
sheets meet. At to M (6.134+0.161i) e-5iri6, dF+((,)/d(, M 0. Comparison with (10) 
shows that this branch point corresponds to a slightly unstable spatial wave. However, 
this wavenumber only forms an eigenvalue for a complex frequency. Orr-Sommerfeld 
calculations show that the branch point lies off the real Reynolds number-frequency 
plane at a point where the imaginary part of the frequency is negative. 
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FIGURE 9. Loci of F+(&,) for <,, = e-5ni’6~ = e-5ni/6(~ + iy) for lines x = const. and y = const. 

As mentioned earlier, the part of the Tietjens curve near z z 2.3 corresponds to the 
lower-branch neutral curve, while the upper-branch curve corresponds to the Tietjens 
function near the origin. In between these two limiting cases, the Tietjens function 
tightly encircles the branch point and so, in effect, switches branches near the loop. In 
other words, the upper branch (beyond the kink) is due to a mode with a five-deck 
structure, the lower branch (and the upper branch before the kink) is due to a second 
mode with a triple-deck structure, and the two modes join together at the branch point 
near the kink in the neutral curve. The close proximity of the branch point to the 
neutral curve means that series expansions (6) for the neutral curve will be likely to 
encounter inaccuracies in this region. Indeed, figure 3 confirms that the kink marks the 
lowest R, for which (6) is still a good approximation. 

5. Asymptotic solutions to the Orr-Sommerfeld equation 
When Hultgren obtains the upper-branch neutral curve from a triple-deck analysis, 

he is reproducing a result from Reid’s (1965) asymptotic calculations of the 
Orr-Sommerfeld equation. In this context, it is useful to review briefly some of the 
results presented by Reid. 

Reid gives two asymptotic methods for calculating the viscous solutions of the 
Orr-Sommerfeld equation. The first is based on the WKB method (Reid 1965,$3.2.1). 
The solution thus obtained is singular at the critical point, yc .  The WKB solutions are 
expected to be accurate except within a small neighbourhood of the critical point, i.e. 
when I y -yel g Id1 where d is a measure of the thickness of the critical layer and is given 
by d = (iaR, U:)-lI3 and U: is the velocity gradient at the critical layer. 

In order for the WKB solution to give accurate eigenvalues, this inequality must 
hold at the boundary y = 0, i.e. 

This condition is equivalent to stipulating that the critical layer must not overlap the 
viscous wall layer and corresponds to the five-deck asymptotic structure. 

The second approach is called by Reid the ‘Airy function solution’ (Reid 1965, 
$3.2.2). This technique aims to provide a solution that is valid close to the critical layer, 

lYcl B 14. (15) 
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FIGURE 10. Variation of the ratio of the critical layer thickness, A ,  to the height of the critical 
layer, yc,  with Reynolds number. The dotted line shows the five-deck asymptotic scaling. 

and involves expanding the terms in the Orr-Sommerfeld equation in powers of 
(y -ye) .  When this is done, the leading-order terms reduce to Airy’s equation (with 
independent variable [ = ( y  - y , ) /d)  and the eigenfunction is given by integrals of Airy 
functions. This approach is valid provided that I y - ye/ % 1. Hence the condition for 
accurate estimates of the eigenvalues is given by 

lYel 4 1. (16) 

The dispersion relationship is then obtained from a second viscous function, which is 
the Tietjens function (9). 

The inequalities (1 5) and (16) have been investigated numerically along the neutral 
curve calculated in $3. As expected, yc  becomes arbitrarily small on both upper and 
lower branches at a sufficiently high Reynolds number, confirming that the asymptotes 
of both branches are accessible to the Tietjens function analysis. However, near the 
critical Reynolds number yc - 1.2 and this explains the inaccuracies of (8) in this 
region. (The critical Reynolds number of (8) is too large by a factor of two.) The ratio 
d / y ,  is plotted in figure 10. As expected, this ratio becomes arbitrarily small on the 
upper branch at high Reynolds numbers. However, it only follows the asymptotic 
scaling beyond the kink and it becomes significantly larger near the kink. It continues 
to increase monotonically along the neutral curve around the ‘nose’ and tends to a 
finite value along the lower branch. Reid (1965, equation (3.124)) shows that the WKB 
method gives the wrong leading-order scaling for the lower branch. 

The Airy function (triple-deck) approach contains both the upper branch and lower 
branch as limiting cases, since the large-argument expansions of both viscous functions 
are the same to leading order: 

ein14 5 ein14 25 ein/2 

G(z) = - 1 +--+--+... 
z3I2 ( 4 z3I2 16 z3 

(18) and 

in the limit (zJ -too, see Reid (1965, equations (3.56) and (3.77)). However, the viscous 

ein/4 5 ein14 15 1 ein/2 

F + ( Z )  = - 1 +--+--+ . * -  

z3I2 ( 4 z3I2 32 z3 
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FIGURE 11. Neutral curves for Orr-Sommerfeld calculations on Falkner-Skan profiles. Circles are 

experimental data from Ross et al. (1970). 

function G cannot be used for the lower branch. In fact, it does not give the kink in 
the neutral curve on the upper branch; this suggests that the kink represents the limit 
of applicability of an upper branch analysis based on the viscous function G. 

6. Falkner-Skan profiles 
The results of the previous sections suggest that the five-deck structure is not relevant 

for the Reynolds numbers at which transition actually occurs for a Blasius profile. 
However, for the case of an inflectional profile it may be much more important. With 
this in mind, we have repeated the Orr-Sommerfeld calculations for Falkner-Skan 
profiles under both positive and negative pressure gradients. 

The similarity equation 

2f++ff”+-(l-f”2)=0, m 
m + l  (19) 

to be solved subject to the boundary conditions f(0) =f’(O) =f’(co)- 1 = 0 where 
f’ = U,  gives a profile due to a flow whose free-stream velocity is proportional to xm.  
Figure 11 shows how the neutral curves vary for small variations in the pressure- 
gradient parameter m. The solid line is for the Blasius profile m = 0, the dotted line is 
for the favourable pressure gradient with m = 0.01 and the dashed line is for the 
adverse pressure gradient with m = -0.01. The latter curve passes much closer to the 
experimental data of Ross et al. (1970) than does our Blasius neutral curve, which 
might imply that those data were actually acquired in an adverse-pressure-gradient 
flow, despite intense efforts of the investigators to eliminate all influences causing 
pressure gradients. In fact, Saric (1990) suggests that the lowest Reynolds numbers 
results of Ross may have been acquired in the adverse-pressure-gradient recovery zone 
of the leading edge. The work of Klingmann et al. (1993) shows how important 
leading-edge conditions can be in experimental attempts to measure the neutral curve 
near the nose, and they obtain data that lie much closer to the Orr-Sommerfeld neutral 
curves. 
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The main point, though, is that the position of the kink on the neutral curve is very 
sensitive to small changes in the pressure gradient. As expected from asymptotic 
theory, the non-zero pressure-gradient profiles have a neutral curve that scales 
differently from that of the Blasius profile on the upper branch, but only beyond the 
kink. In particular, for the adverse-pressure-gradient profiles (which are inflectional) 
the five-deck critical-layer structure will indeed be relevant at much lower Reynolds 
numbers. 

7. Conclusions 
Triple-deck modes have a critical layer that lies within the viscous wall layer and five- 

deck modes have a critical layer that is separate from the viscous wall layer. In the 
latter case the phase jump across the critical layer plays a determining role in the 
stability, but it is neglected in the leading-order triple-deck analysis. Hultgren (1987) 
shows that if the phase jump is retained in the triple-deck calculation then the upper- 
branch neutral curve can also be obtained, including its asymptotic scaling (cf. Reid 
1965). 

The numerical solutions of the Orr-Sommerfeld equation presented in this paper 
show firstly that the critical layer lies within the viscous wall layer for the whole of the 
lower branch and this probably explains the success of the triple-deck analysis even 
near the critical Reynolds number. Secondly, on the upper branch, the critical layer is 
found to emerge from the viscous wall layer only at R, z lo5. Even at a free-stream 
velocity of 250 m s-l (when compressibility effects will already be becoming important) 
this Reynolds number is only reached some 200 m from the leading edge. For R, < lo5 
on the upper branch, the viscous wall layer, which contains the critical layer, scales 
according to the triple-deck asymptotic theory. For R, > lo5 the viscous wall layer and 
the height and thickness of the critical layer are all found to follow the five-deck 
asymptotic scalings. 

The phase jump is an essential feature of the five-deck analysis, but it can be 
incorporated into the triple-deck analysis giving a theory for the whole of the unstable 
region, see Hultgren (1987). Indeed, given the apparent triple-deck structure of the 
eigenfunctions on the upper branch for R,< lo5, such a theory would seem to be 
most appropriate. At present it is not known how the five-deck analysis might be 
extended to make it valid for R, < lo5. It seems that present five-deck analyses may not 
be applicable to transitional Reynolds numbers. This suggests that the results of 
nonlinear analyses based on the upper-branch scaling, which include resonant triad 
interactions and nonlinear critical layer effects, may need re-appraising. 

The transition from a triple-deck structure to a five-deck structure occurs relatively 
abruptly and is seen as a kink in the neutral curve. The kink can be traced to a small 
loop in the Tietjens function which encloses a square-root-singularity branch point. 
The asymptotic expansions (4) and (6) depend upon assuming that the dispersion 
relationship is analytic. At the branch point this is not true and neither series can 
adequately describe the dispersion relationship in this region. 

The small adverse pressure gradient corresponding to a Falkner-Skan parameter of 
m = -0.01 brings the emergence of the critical-layer structure down to about R, x 
3 x lo4, which corresponds to 20 m from the leading edge of the wing of an aircraft in 
flight. Adverse pressure gradients tend to destabilize the flow and it is not yet clear 
whether a laminar flow can be maintained under an adverse pressure gradient that is 
sufficiently strong to bring in the critical-layer structure at transitional Reynolds 
numbers. 
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It is sometimes argued, e.g. Goldstein & Durbin (1986), that the upper-branch 
behaviour is more important than that for the lower branch. The argument runs as 
follows. The upper branch occurs at R, = O(c5)  and the lower branch is at R, = 
O(c4). Since c5 % ,5-4 as c --f 0, the upper branch applies over a much greater range of 
Reynolds numbers. The lower-branch scaling can then be thought of as an ‘inner’ or 
boundary layer region for the main unstable region. In addition, nonlinear effects of 
initially small-amplitude disturbances will become important near the upper branch 
first, because this is where the amplitude is greatest. This interpretation is entirely 
consistent with the results presented here, but can only be applied at sufficiently high 
Reynolds number (R, % lo5). For transitional Reynolds numbers, the triple-deck 
structure prevails. 

In the light of these observations it could be argued that the upper-branch scaling 
of Bodonyi & Smith (1981) fails to coincide with Orr-Sommerfeld predictions and 
experiment because of its failure to negotiate the branch point accurately. Higher-order 
terms, or a clever re-ordering of terms, may ultimately model the behaviour near the 
branch point and hence improve the agreement near the experimental data. In other 
words, higher-order terms are needed in the expansions because of the branch point 
and not because of non-parallel effects. 

A cautionary note should also be registered concerning nonlinear analyses developed 
from the leading-order term of an asymptotic expansion that applies only at high 
Reynolds numbers (see also Cowley & Wu 1993). For example, Hall & Smith (1982) 
calculated the Landau constant for a forced plane Poiseuille flow based on the leading- 
order neutral curve for the lower branch, which is some way off from the 
Orr-Sommerfeld neutral curve (figure 2 of their paper). Notwithstanding the footnote 
on p. 256 of Hall & Smith, A. Davey (1983, private communication) reports that, for 
Reynolds numbers < lo6, the sign of the Landau constant based on Orr-Sommerfeld 
calculations differs from that quoted by Hall & Smith, Agreement comes only at a yet 
higher Reynolds numbers suggesting that more terms need to be included in the neutral 
curve asymptotics if results are to be obtained that can be compared with experiments. 

I am grateful to Professor M. Gaster FRS for making available his Orr-Sommerfeld 
solver. This work has benefitted from discussions with Professor Gaster and Dr S .  J. 
Cowley and was supported by the Engineering and Physical Sciences Research Council 
of the UK under its Applied Nonlinear Mathematics Initiative. 
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